

Fig. 1. The crystal structure of $\mathrm{Nb}_{5}\left(\mathrm{Ge}_{x}, \mathrm{Sn}_{1-x}\right)_{2} \mathrm{Ge}, x=0.25$, projected (a) along the c axis and (b) along the a axis; open circles Nb , filled circles Ge , shaded circles ($\mathrm{Sn}, \mathrm{Ge} \mathrm{)}$.

It is considered that the arrangement of Ge and Sn atoms in the structure is controlled by their atomic radii. The analysis shows that Sn was not accommodated in the $4(a)$ site, but this site is occupied by Ge . The atomic radii of the Sn atoms are relatively large compared with the small radius of Ge atoms. Thus, the 4(a) site with its restricted space is expected to be occupied by the smaller atoms. Sn atoms of other $\mathrm{W}_{5} \mathrm{Si}_{3}$-type intermetallic compounds, $\mathrm{Ta}_{5} \mathrm{SnGa}_{2}$ (Ye et al., 1990), $\mathrm{Nb}_{5} \mathrm{Sn}_{2} \mathrm{Ga}$ (Ukei, Shishido \& Fukuda, 1989) and $\mathrm{Nb}_{5} \mathrm{Sn}_{2} \mathrm{Si}$ (Horyn \&

Lukaszewicz, 1970), show the same crystal chemical behavior as Sn in the present structure. That, in these compounds, Sn atoms are always accommodated in $8(h)$ sites. In binary systems of $\mathrm{Va}-\mathrm{Sn}$, such as $\mathrm{Nb}-\mathrm{Sn}, \mathrm{Ta}-\mathrm{Sn}$ or $\mathrm{V}-\mathrm{Sn}$, compounds which have crystallized in a $\mathrm{W}_{5} \mathrm{Si}_{3}$-type structure have not been reported. This may be because $\mathrm{W}_{5} \mathrm{Si}_{3}$-type structures are unstable when containing large atoms.

The title compound has an interesting chemical composition, with $\mathrm{Ge} / \mathrm{Sn}=1$. If Sn atoms occupy all the $8(h)$ sites, the chemical formula should be $\mathrm{Nb}_{5} \mathrm{Sn}_{2} \mathrm{Ge}$ for $\mathrm{Nb}_{5}\left(\mathrm{Ge}_{x}, \mathrm{Sn}_{1-x}\right)_{2} \mathrm{Ge}$ with $x=0$. However, the title compound never contains this amount of Sn atoms for the synthetic condition of the Sn self-flux method. This compound contains as many Sn atoms as the crystal structure allows. As a conclusion, the amount of Sn in the chemical composition seems to be governed by the space around the Nb atoms.

The authors thank Professor M. Tokonami, University of Tokyo, for his encouragement. MT and HH were financially supported by the Foundation for the Promotion of Material Science and Technology of Japan and by a Grant-in-Aid for Scientific Research of the Ministry of Education, Science and Culture of the Japanese government.

References

Aronsson, B. (1955). Acta Chem. Scand. 9, 1107-1110.
Finger, L. W. (1969). Carnegie Inst. Washington Yearb. 67, 216-217.
Horyn, R. \& Lukaszewicz, K. (1970). Bull. Acad. Pol. Sci. Ser. Sci. Chim. 18, 59-64.
Ukei, K., Shishido, T. \& Fukuda, T. (1989). Acta Cryst. C45, 349-350.
Ye, J., Horiuchi, H., Shishido, T., Ukei, K. \& Fukuda, T. (1990). Acta Cryst. C46, 1193-1195.

Single-Crystal Structure of $\mathbf{K}_{\mathbf{3}} \mathbf{N b}_{\mathbf{8}} \mathbf{O}_{\mathbf{2 1}}$

By A. Benabbas, M. M. Borel, A. Grandin, A. Leclatre* and B. Raveau
Laboratoire de Cristallographie et Sciences des Matériaux associé au CNRS, CRISMAT-ISMRa, Boulevard du Maréchal Juin, 14050 Caen, France

(Received 26 February 1990; accepted 19 August 1992)

Abstract. Tripotassium 21-oxooctaniobate, $M_{r}=12.0404(4) \AA, \quad V=874.6(1) \AA^{3}, \quad Z=2, \quad D_{x}=$ 1196.53, hexagonal, $P 6_{3} / m c m, a=9.1584(5), c=4.54 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$

[^0]0108-2701/93/030439-03\$06.00
$5.65 \mathrm{~mm}^{-1}, \quad F(000)=1106, T=294 \mathrm{~K}, \quad R=0.044$, $w R=0.047$ for 2540 reflections with $I>3 \sigma(I)$. The © 1993 International Union of Crystallography
framework is built up from $\left[\mathrm{Nb}_{6} \mathrm{O}_{24}\right]$ units stacked along c giving $\left[\mathrm{Nb}_{6} \mathrm{O}_{21}\right]_{\infty}$ chains which are held together by single NbO_{6} octahedra.

Introduction. During the investigation of the $\mathrm{K}-\mathrm{Nb}-\mathrm{P}-\mathrm{O}$ system, single crystals of the compound $\mathrm{K}_{3} \mathrm{Nb}_{8} \mathrm{O}_{21}$ were synthesized along with the new phosphate bronzes $\mathrm{KNb}_{3} \mathrm{P}_{3} \mathrm{O}_{15}$ (Leclaire, Borel, Grandin \& Raveau, 1989), $\mathrm{K}_{3} \mathrm{Nb}_{6} \mathrm{P}_{4} \mathrm{O}_{26}$ (Benabbas, Borel, Grandin, Leclaire \& Raveau, 1990a), $\mathrm{K}_{7} \mathrm{Nb}_{14} \mathrm{P}_{9} \mathrm{O}_{60}$ (Leclaire, Benabbas, Borel, Grandin \& Raveau, 1989), $\mathrm{K}_{4} \mathrm{Nb}_{8} \mathrm{P}_{5} \mathrm{O}_{34}$ (Benabbas, Borel, Grandin, Leclaire \& Raveau, 1990b) and $\mathrm{PNb}_{9} \mathrm{O}_{25}$ (Benabbas, Borel, Grandin, Leclaire \& Raveau, 1991). This oxide was synthesized in the laboratory for the first time several years ago (Groult, Chailleux, Choisnet \& Raveau, 1976). A structural model was established from X-ray powder diffraction data. We report here the structural determination from a single crystal, carried out in order to improve previous crystallographic results.

Experimental. Crystal: $0.216 \times 0.144 \times 0.036 \mathrm{~mm}$, $6 / \mathrm{mmm}$ symmetry with systematic absences $l=2 n+$ 1 in hhol, Enraf-Nonius diffractometer. Unit cell: least squares on 25 reflections $\pm 2 \theta, 18 \leq \theta \leq 22^{\circ}$. Intensity measurement up to $\theta=45^{\circ}$ with an $\omega-4 / 3 \theta$ scan of width $(1+0.35 \tan \theta)^{\circ}$ and a counter slit aperture of $(1+\tan \theta) \mathrm{mm}$, values determined by the study of reflections in the $\omega-\theta$ plane. Scanning speed adjusted to obtain $\sigma(I) / I<0.018$ or to approach it in a time limited to 60 s . Three standards for count (440, $\overline{4} 80, \overline{8} 40$) every 4000 s and orientation (080 , $800,0,4,10$) every 600 reflections; no appreciable trends. 5257 reflections measured, 2540 with $I>$ $3 \sigma(I)$ used to solve (heavy-atom method) and refine the structure on F. Positions and anisotropic thermal parameters refined. No correction made for extinction or absorption. The usual f 's from International Tables for X-ray Crystallography (1974, Vol. IV). All calculations carried out on a MicroVAX II with the SDP system (B. A. Frenz \& Associates, Inc., 1982), $\Delta / \sigma_{\max }=0.005, \quad \Delta \rho<4 \mathrm{e} \AA^{-3}, \quad R=0.044, \quad w R=$ $0.047, w=f(\sin \theta / \lambda), S=1.3$. Atomic parameters in Table 1*.

Discussion. This study confirms the powder diffraction results, i.e. that the octahedral framework [$\left.\mathrm{Nb}_{8} \mathrm{O}_{21}\right]_{\infty}$ is, as described before, built up from edge- and corner-sharing NbO_{6} octahedra (Fig. 1). Six octahedra [$\mathrm{Nb}(2)$ type] share edges in such a way

[^1]Table 1. Atomic coordinates and equivalent isotropic thermal parameters $\left(\AA^{2}\right)$ for the title compound

$B_{\text {cq }}=(4 / 3) \sum_{i} \sum_{j} \beta_{i j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {eq }}$
Nb (1)	0.667	0.333	0.000	0.875 (5)
Nb (2)	0.24888 (3)	0.249	0.09468 (2)	0.711 (2)
K	0.5938 (1)	0.594	0.250	1.57 (1)
O(1)	0.4818 (2)	0.3143 (2)	0.0958 (2)	0.84 (2)
O(2)	0.2006 (3)	0.000	0.0740 (2)	0.75 (3)
0 (3)	0.2070 (4)	0.207	0.250	0.87 (3)

Table 2. Main distances (\AA) and angles $\left({ }^{\circ}\right)$ in the NbO_{6} and KO_{12} polyhedra with the $\mathrm{Nb}-\mathrm{O}$ distances on the diagonal, the $\mathrm{O}-\mathrm{O}$ distances above and the $\mathrm{O}-\mathrm{Nb}-\mathrm{O}$ angles below

$\mathrm{Nb}(1)$	$\mathrm{O}(1)$	$\mathrm{O}\left(1^{\text {i }}\right.$)	$\mathrm{O}\left(\mathrm{l}^{\text {ii) }}\right.$)	$\mathrm{O}\left(1^{\text {iii) }}\right.$)	O (19)	O(1)
$O(1)$	1.983 (2)	2.794 (5)	2.794 (5)) 2.969 (7)	2.671 (6)	3.955 (8)
$\mathrm{O}\left(1^{\text {i }}\right.$)	89.6 (2)	1.983 (2)	2.794 (5)	() 3.955 (8)	2.969 (7)	2.671 (6)
$\mathrm{O}\left({ }^{\text {ii) }}\right.$)	89.6 (2)	89.6 (2)	1.983 (2)) 2.671 (6)	3.955 (6)	2.969 (7)
$\mathrm{O}\left(1^{\text {iii) }}\right.$)	96.9 (2)	171.3 (2)	84.7 (2)	1.983 (2)	2.794 (5)	2.794 (5)
O(liv)	84.7 (2)	96.9 (2)	171.3 (2)	89.6 (2)	1.983 (2)	2.794 (5)
$\mathrm{O}\left(\mathrm{l}^{v}\right)$	171.3 (2)	84.7 (2)	96.9 (2)	89.6 (2)	89.6 (2)	1.983 (2)
$\mathrm{Nb}(2)$	$\mathrm{O}(1)$	$\mathrm{O}\left(1^{\text {ri }}\right.$)	$\mathrm{O}(2)$	$\mathrm{O}\left(2^{\text {nii }}\right)$	$\mathrm{O}\left(2^{\text {viii }}\right)$	$\mathrm{O}(3)$
O(1)	1.906 (3)	2.658 (6)	2.752 (4)) 4.004 (8)	3.036 (6)	2.876 (6)
$\mathrm{O}\left(1^{\text {n }}\right.$)	88.4 (2)	1.906 (3)	4.004 (8)) 2.752 (4)	3.036 (6)	2.876 (6)
$\mathrm{O}(2)$	86.4 (2)	171.8 (2)	2.108 (2)) 3.182 (9)	2.559 (3)	2.825 (3)
$\mathrm{O}\left(\mathrm{v}^{\text {i }}\right.$)	171.8 (2)	86.4 (2)	98.0 (2)	2.108 (2)	2.559 (3)	2.825 (3)
$\mathrm{O}\left(2^{\text {viii }}\right)$	99.2 (2)	99.2 (2)	75.4 (2)	75.4 (2)	2.078 (5)	3.901 (9)
$\mathrm{O}(3)$	97.9 (2)	97.9 (2)	89.2 (2)	89.2 (2)	156.1 (2)	1.909 (1)
$\mathrm{K}-\mathrm{O}\left(2^{\text {ij }}\right.$)		2.835 (5)		$\mathrm{K}-\mathrm{O}\left(1^{\text {ii }}\right.$)	3.196 (4)	
$\mathrm{K}-\mathrm{O}\left(2^{\mathrm{ix}}\right)$		2.835 (5)		$\mathrm{K}-\mathrm{O}\left(1^{\text {xii }}\right.$)	3.196 (4)	
$\mathrm{K}-\mathrm{O}\left(1^{\text {x }}\right.$)		2.903 (4)		$\mathrm{K}-\mathrm{O}\left(1^{\text {ix }}\right.$)	3.196 (4)	
$\mathrm{K}-\mathrm{O}\left(1^{\text {xi }}\right)$		2.903 (4)		$\mathrm{K}-\mathrm{O}\left(1^{\text {xiii }}\right)$	3.196 (4)	
$\mathrm{K}-\mathrm{O}\left(1^{\text {li }}\right.$)		2.903 (4)		$\mathrm{K}-\mathrm{O}\left({ }^{\text {xiv }}\right.$)	3.222 (6)	
$\mathrm{K}-\mathrm{O}(1)$		2.903 (4)		$\mathrm{K}-\mathrm{O}\left(3^{\text {ij }}\right.$)	3.222 (6)	

Symmetry code: (i) $1-y, x-y, z$; (ii) $y-x, 1-x, z$; (iii) $1-y$, $1-x,-z$; (iv) $x, x-y,-z$; (v) $1+x-y, y,-z$; (iv) y, x, z; (vii) $-y, x-y, z$; (viii) $x-y, x,-z$; (ix) $1+y-x, 1-x, \frac{1}{2}-z$; (x) $y, x, \frac{1}{2}-z$; (xi) $x, y, \frac{1}{2}-z$; (xii) $1-x, 1+y-x, z$; (xiii) $1-x$, $1+y-x, \frac{1}{2}-z$; (xiv) $1-y, 1+x-y, z$.

a!
Fig. 1. Structure of $\mathrm{K}_{3} \mathrm{Nb}_{8} \mathrm{O}_{21}$ projected along c.
that they form $\left[\mathrm{Nb}_{6} \mathrm{O}_{24}\right]$ units. These units are stacked along the c axis and share corners in order to form $\left[\mathrm{Nb}_{6} \mathrm{O}_{21}\right]_{\infty}$ columns. The columns are linked together by sharing their vacant corners with single NbO_{6} octahedra [$\mathrm{Nb}(1)$ type]. This framework delimits cages where the K ions are located. The structure may also be described as $\left[\mathrm{Nb}_{8} \mathrm{O}_{24}\right]_{2 \infty}$ layers stacked along \mathbf{c} and sharing their free corners.

The spread of the $\mathrm{Nb}(2)-\mathrm{O}$ distances is half that observed from powder data but it is confirmed that the $\mathrm{Nb}(2) \mathrm{O}_{6}$ octahedron is strongly distorted as shown by the wide range of $\mathrm{O}-\mathrm{Nb}(2)-\mathrm{O}$ angles (75.4 to 99.2°) and $\mathrm{O}-\mathrm{O}$ distances (2.559 to $3.182 \AA$) (Table 2). The $\mathrm{Nb}(1) \mathrm{O}_{6}$ octahedra are more regular. The mean valency of the Nb atoms deduced from the Zachariasen (1978) curve suggests that the $\mathrm{Nb}(1)$ sites are mainly occupied by Nb^{\vee} (mean valency 4.94), whereas the electrons would be preferentially delocalized in the $\mathrm{Nb}(2) \mathrm{O}_{6}$ octahedra (mean valency 4.86) in agreement with the size of these two types of sites. The mean valency deduced from this calcula-
tion (4.88) is in agreement with the valency deduced from the charge balance according to the formula $\mathrm{K}_{3} \mathrm{Nb}_{7}^{\mathrm{V}} \mathrm{Nb}^{\mathrm{IV}} \mathrm{O}_{21}(4.875)$.

The K ions lie in cages between the $\left[\mathrm{Nb}_{8} \mathrm{O}_{24}\right]_{2 \infty}$ layers. They are surrounded by 12 O atoms whose distances are smaller than $3.25 \AA$.

References

B. A. Frenz \& Assoclates, Inc. (1982). SDP Structure Determination Package. College Station, Texas, USA.
Benabbas, A., Borel, M. M., Grandin, A., Leclaire, A. \& Raveau, B. (1990a). J. Solid State Chem. 84, 365-374.
Benabbas, A., Borel, M. M., Grandin, A., Leclaire, A. \& Raveau, B., (1990b). J. Solid State Chem. 87, 360-365.
benabbas, A., Borel, M. M., Grandin, A., Leclaire, A. \& Raveau, B. (1991). Acta Cryst. C47, 849-850.
Groult, D., Challleux, J. M., Choisnet, J. \& Raveau, B. (1976). J. Solid State Chem. 19, 235-244.
leclaire, A., Benabbas, A., Borel, M. M., Grandin, A. \& Raveau, B. (1989). J. Solid State Chem. 83, 245-254.
leclaire, A., Borel, M. M., Grandin, A. \& Raveau, B. (1989). J. Solid State Chem. 80, 12-16.

Zachariasen, W. H. (1978). J. Less-Common Met. 62, 1-7.

Seven-Coordinate Manganese(II) Complexes of 2,6-Bis[1-(2-hydroxyethylimino)ethyl]pyridine

By Sally Brooker and Vickie McKee*
Chemistry Department, University of Canterbury, Christchurch, New Zealand

(Received 26 December 1991; accepted 30 June 1992)

Abstract

Abstact. Diaqua\{2,6-bis[1-(2-hydroxyethylimino)-ethyl]pyridine- $\left.N, N^{\prime}, N^{\prime \prime}, O, O^{\prime}\right\}$ manganese(II) diperchlorate, $\left[\mathrm{Mn}(L)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}\left(L=\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}\right)$ (I), $M_{r}=539.2$, monoclinic, $C 2 / c, a=16.142$ (3), $b=$ 12.222 (3), $\quad c=11.047$ (3) $\AA, \quad \beta=94.41$ (2) ${ }^{\circ}, \quad V=$ 2173 (1) $\AA^{3}, Z=4, D_{x}=1.648 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)$ $=0.71069 \AA, \mu=0.893 \mathrm{~mm}^{-1}, F(000)=1108, T=$ 293 K , final $R=0.064$ for $1684[F>6 \sigma(F)]$ independent observed reflections. \{2,6-Bis[1-(2-hydroxyethyl-imino)ethyl]pyridine- $\left.N, N^{\prime}, N^{\prime \prime}, O, O^{\prime}\right\}$ bis(thiocyanatoN)manganese(II), $\left[\mathrm{Mn}(L)(\mathrm{NCS})_{2}\right]$ (II), $M_{r}=420$, monoclinic, $I 2 / a, a=9.902$ (2), $b=12.581$ (2), $c=$ 15.203 (3) \AA A,$\beta=101.46$ (2) ${ }^{\circ}, V=1856.2$ (6) $\AA^{3}, Z=$ $4, D_{x}=1.504 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)=0.71069 \AA, \mu=$ $0.917 \mathrm{~mm}^{-1}, F(000)=868, T=293 \mathrm{~K}$, final $R=$ 0.043 for $1505[F>6 \sigma(F)]$ independent observed reflections. Bisazido 2,6 -bis[1-(2-hydroxyethyl-

[^2]0108-2701/93/030441-05\$06.00
imino)ethyllpyridine- $\left.N, N^{\prime}, N^{\prime \prime}, O, O^{\prime}\right\}$ manganese(II), $\left[\mathrm{Mn}(L)\left(\mathrm{N}_{3}\right)_{2}\right]$ (III), $M_{r}=388$, orthorhombic, Pbcn, $a=18.643$ (7),$\quad b=12.616$ (3) , $\quad c=7.127$ (3) \AA, $V=1676(1) \AA^{3}, \quad Z=4, \quad D_{x}=1.539 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda($ Мо $K \alpha)=0.71069 \AA, \mu=0.783 \mathrm{~mm}^{-1}, F(000)=$ $804, T=173 \mathrm{~K}$, final $R=0.041$ for $818[F>6 \sigma(F)]$ independent observed reflections. In each structure the Mn coordination geometry is approximately pentagonal bipyramidal with the five donors from the ligand L occupying the pentagonal plane. There is extensive hydrogen bonding in each structure.

Introduction. Many seven-coordinate complexes of first-row transition metals have been synthesized using macrocyclic ligands (Nelson, 1980; Drew, Othman \& Nelson, 1976; Drew, Othman, McFall, Mcllroy \& Nelson, 1977) or rigid, resonancestabilized planar systems (Capparelli, de Meester, Goodgame, Gunn \& Skapski, 1985; Pelizzi, Pelizzi,
© 1993 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55651 (18 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * To whom correspondence should be addressed.

